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Paramagnetic enhancement of NMR relaxation (NMR-PRE) de-
pends on thermal relaxation of the electron spin system. Most
previous analyses of experimental NMR-PRE data have relied on
Bloembergen–Morgan (B–M) theory to describe the magnetic field
dependence of electron spin relaxation in liquid samples. However,
B–M theory assumes a Zeeman-limit situation and is not physi-
cally appropriate to the common case of S ≥ 1 transition metal ions
which possess a permanent zero-field splitting (zfs) that is compara-
ble to or larger than the Zeeman splitting. Theory has been needed
which (1) includes the effects of the zfs interaction, thus provid-
ing a realistic description of the magnetic field dependence of the
NMR-PRE outside the Zeeman limit, and (2) describes electron spin
relaxation phenomena at a comparable level of complexity to that
of B–M theory, i.e., with two magnetic field-dependent electron spin
relaxation times, τS1 and τS2, defined in the laboratory coordinate
frame. Theory of this kind is developed. Expressions derived in a
previous study (R. R. Sharp and L. L. Lohr, J. Chem. Phys. 115, 5005
(2001).) for level-specific relaxation rates have been averaged over
spin eigenstates to give level-averaged quantities, τS1,2. This kind of
averaging leads to a great simplification in the mathematical form of
the results. Simple zfs-limit molecular-frame and laboratory-frame
expressions are given for electron spin S= 1, 3/2, 2, and 5/2. Gen-
eral expressions, valid for S ≥ 1 and for arbitrary magnitudes of
the Zeeman and zfs energies, are derived for level-averaged elec-
tron spin relaxation times defined in both the laboratory- and the
molecule-fixed coordinate frames. The new theory coincides with
B–M theory in the Zeeman limit. C© 2002 Elsevier Science (USA)
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INTRODUCTION

NMR-paramagnetic relaxation enhancement or NMR-PRE
refers to the enhancement of the NMR relaxation rate that is pro-
duced by addition of a paramagnetic solute to the sample. The
traditional theory of the NMR-PRE is due to Solomon (1) and
Bloembergen and Morgan (2) (SBM), who derived expressions
for the NMR-PRE assuming the Zeeman limit situation, i.e.,
that the static Hamiltonians of both the electron and the nuclear
26
spins are exclusively Zeeman Hamiltonians. For transition metal
ions with spin S ≥ 1, this assumption is frequently not appro-
priate physically due to the influence of zero-field splitting (zfs)
interactions in the electron spin Hamiltonian. When the elec-
tronic Zeeman and permanent zfs Hamiltonians, HZ and H 0

zfs,
are comparable in magnitude and when the paramagnetic solute
undergoes rapid Brownian reorientation, the physical descrip-
tion of the NMR-PRE experiment becomes complex, particu-
larly with regard to the motion of the electron spin. The electron
spin wavefunctions then depend on the orientation of the para-
magnetic solute with respect to the Zeeman field. The spatial
quantization of the spin motion is no longer aligned along the
laboratory magnetic field but becomes complex; in the zfs limit,
the spin motion is quantized (or more precisely, polarized) along
molecule-fixed axes. Also, outside the Zeeman limit, the elec-
tron spin wavefunctions contain explicit time dependence due to
molecular reorientation. In recent years, considerable progress
has been made in this laboratory (3–18) (reviewed in Ref. (3))
and by groups in Sweden (19–32), Italy (33–37), and France
(38, 39) in analyzing these complex situations.

An important aspect of theory that remains incompletely de-
veloped concerns the magnetic field dependence of electron spin
relaxation outside the Zeeman limit. The Zeeman limit situation
is described by the widely used theory of Bloembergen and
Morgan (2) (B–M). Theory is needed (1) which incorporates
the effects of the permanent zfs interaction, thereby providing
a realistic description of the magnetic field dependence of the
relaxation times; and (2) which describes electron spin relax-
ation at a similar level of complexity as B–M theory—namely,
with two magnetic field-dependent relaxation times, τS1 and
τS2, defined in the laboratory frame. The present study pro-
vides theory of this kind. Expressions are derived for “level-
averaged” (see below) electron spin relaxation times, which
approximate the true relaxation behavior as an averaged de-
cay over spin eigenstates. These expressions, defined both in
the laboratory coordinate frame and in the molecule-fixed zfs
principal axis system, are valid for S ≥ 1 and for arbitrary
magnitudes of the electronic Zeeman and zfs energies. Also,
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simple closed-form expressions, valid in the zfs limit, are given
for spins S = 1, 3/2, 2, and 5/2 (Appendix 3). The phys-
ical mechanism of relaxation is the same as that assumed
by B–M, namely, collisional distortion of the permanent zfs
tensor.

BACKGROUND

This section reviews related earlier work, particularly of
Ref. (40), which provides the physical and mathematical frame-
work of the current study. As described above, relaxation in
the Zeeman limit is described by B–M theory. In the opposite
physical limit (H 0

zfs � HZ), the electron spin motion is spatially
quantized (or polarized) along the molecule-fixed principal axes
of the permanent zfs tensor, and a description of the electron spin
motion is most conveniently formulated in the molecule-fixed
coordinate frame (4, 6). Electron spin relaxation for S = 1 in the
zfs limit has recently been analyzed by Westlund (41) and by
Bertini et al. (42), who used Redfield theory to derive closed-
form zfs limit expressions for TS2 relaxation rates defined along
molecule-fixed coordinate axes. These studies assumed, as in
B–M theory, that relaxation results from collisionally induced
distortion of the permanent zfs tensor.

Subsequently, Sharp and Lohr (40) derived expressions for
molecular-frame (M-F) electron spin relaxation times for spins
S ≥ 1 subject to arbitrary magnitudes of the Zeeman and zfs
interactions, likewise assuming slow Brownian reorientation.
These authors employed a microcopic formulation of the prob-
lem which computes the electron spin time correlation functions
by solving the equation of motion of the spin components in the
thermal equilibrium sample (in contrast, Redfield theory com-
putes the return of a perturbed density matrix to thermal equilib-
rium). Physically, “electron spin relaxation” times in NMR-PRE
describe randomization of the microscopic electron-nuclear
(S–I ) hyperfine interaction in samples in which the elec-
tron spin density matrix remains at thermal equilibrium.
The time correlation functions of the electron spin motion
are

Gr (τ ) = 〈Sr (τ ) · Sr (0)〉 [1a]

= Tr{ρSSr (τ )Sr (0)}, [1b]

where r denotes Cartesian coordinates, which may be defined,
as convenient for the physical situation, either in the laboratory
frame (L-F: r = x, y, z,with z||B0) or in the molecule-fixed prin-
cipal axis system of the permanent zfs tensor (M-F: r = x̂, ŷ, ẑ).
The density operator, ρS, of the electron spin remains at ther-
mal equilibrium during the NMR-PRE experiment (ρS = ρ0).
The superscripting line in Eqs. [1] indicates an average over the
nonspin molecular degrees of freedom. Gr (τ ) describes both
coherent and stochastic motions of the electron spin. The coher-

ent motions are driven by the static electron spin Hamiltonian,
H 0

S , which is assumed to consist of Zeeman plus permanent zfs
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terms,

H 0
S = HZ + H 0

zfs, [2a]

HZ = geβe Bo(Ŝz cos β + sin β(Ŝx cos ϕ + Ŝ y sin ϕ)) [2b]

H 0
zfs = (2/3)1/2 DŜ(2)

1 + E Ŝ(2)
2 . [2c]

In Eqs. [2], ge and βe are the electron g value and the Bohr
magneton, D and E are the cylindrical and orthorhombic prin-
cipal values of the zfs tensor, and {β, ϕ} are polar angles of the
Zeeman field in the M-F. (Expressed in wavenumber units, D̃
and Ẽ are the zfs parameters of ESR.) In Eq. [2c], additional
terms proportional to fourth-rank tensor functions of the spin
variables are present for S ≥ 2 but are neglected.

The TCFs Gr (τ ) in Eqs. [1] can be expressed in either the
M-F or the L-F, in which case the electron spin relaxation times
are likewise defined in the M-F or L-F. In this section, as in
Refs. (40–42), the M-F formulation is assumed, and hence H 0

S
in Eqs. [2b] and [2c] is expressed in the M-F. The L-F for-
mulation is useful in some circumstances and is discussed in
a subsequent section. The second-rank Cartesian spin tensor
components, S(2)

q , are defined in Appendix 1. In Eqs. [2], the
spin operators are defined in the M-F and written with a cir-
cumflex (∧); spin operators without a circumflex are defined in
the L-F. Thermal decay of the Gr (τ ) results from a stochastic
Hamiltonian, H ′

S(t), which defines the electron spin relax-
ation mechanism. As in Refs. (2, 40–44), H ′

S(t) is attributed
to collisional distortion of the quadratic zfs tensor and can be
written

H ′
zfs(t) = -h

∑
q

cq (t)Ŝ(2)
q , [3]

where the cq (t) are stochastic functions of time.
At thermal equilibrium, the density matrix of S is diagonal,

and Gr (τ ) consists of a sum of contributions, G(α)
r (τ ), from

individual eigenstates,

Gr (τ ) =
∑

α

(ρ0)αα

∑
α′

〈α|Ŝr (τ )|α′〉〈α′|Ŝr (0)|α〉 [4a]

=
∑

α

G(α)
r (τ ). [4b]

The time dependence of the G(α)
r (τ ) can be obtained (40) as

the solution of the equation of motion using second-order time-
dependent perturbation theory by procedure analogous to that of
Redfield theory. Assuming the spin Hamiltonian to be separated
into static and stochastic terms as in Eqs. [2] and [3], the G(α)

r (τ )
can be written

G(α)
r (τ ) = (ρ0)ααexp

( − τ/τ
(α)
S,r

) ∑
β

∣∣〈α∣∣Ŝ(2)
q

∣∣β〉∣∣2
exp(−iωαβτ ),
[5]



T
LEVEL-AVERAGED ELEC

where {|α〉, |β〉} are spin eigenfunctions, and ωαβ are spin tran-
sition frequencies. Transforming Sr (τ ) in Eqs. [1] to the inter-
action representation,

Sr (τ ) = ei H 0
s h-−1τ S̃r (τ )e−i H 0

s h-−1τ , [6]

leads (40) to the transformed quantities, G̃(α)
r (τ ), the time de-

pendence of which exhibit only thermal decay, not the coherent
oscillations due to H 0

S :

G̃(α)
r (τ ) = (ρ0)ααexp

(−τ/τ
(α)
S,r

) ∑
β

|〈α|Ŝr |β〉|2. [7]

The spin TCFs, G̃r (τ ), are defined, as in Eq. [4b], by summing
Eq. [7] over spin eigenstates.

According to Eq. [7], the decay of the G̃(α)
r (τ ) is eigenstate-

specific, in that decay in one eigenstate is uncoupled to decay
in others. This is clearly unlike the decay of a perturbed den-
sity matrix, which involves coupled degrees of freedom of the
density matrix. The reason that the τ

(α)
S,r are eigenstate-specific

quantities is as follows. Electron spin relaxation appears in the
theory of the NMR-PRE as a description of randomization of the
electron-nuclear hyperfine coupling, which results in part from
stochastic motion of the electron spin (for dipolar relaxation, ad-
ditional randomization results from Brownian reorientation of
the interspin I–S vector). Thermal relaxation of Gr (τ ) describes
this randomization as a decay in the persistence of microscopic
correlation in the spin motion. Over sufficiently short time in-
tervals, the correlation is essentially perfect, Gr (0) = 〈S2

r 〉, but
over longer intervals, correlation is destroyed by thermal tran-
sitions. The decay of Gr (τ ) within an eigenstate is uncoupled
to that in different eigenstates: thermal transitions destroy the
persistence of correlation in the spin motion and do not transfer
an existing state of correlation from one eigenstate to another. In
general, there are at most 3(2S+1) distinct relaxation times, τ (α)

S,r
(3 spatial directions and 2S+1 eigenstates). Outside the Zeeman
and zfs limits, τ

(α)
S,r depends on molecular orientation with re-

spect to B0 so that in a powder, electron spin relaxation within a
given eigenstate may involve a continuous distribution of decay
constants.

The electron spin relaxation times of density matrix theory
(41, 42) differ from those described by Eq. [7] and Ref. (40). The
stochastic Liouville approach (19–32) developed in Sweden,
on the other hand, appears to involve a comparable physical de-
scription of electron spin relaxation to that employed here. While
the SL formalism has not been applied specifically to calcula-
tions of electron spin relaxation times (as opposed to calculations
of the NMR-PRE), this approach appears to provide a suitable

basis for including the effects of Brownian reorientation, thus
generalizing the results of Ref. (40).
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The following expression was derived (40) for the τ
(α)
S,r in terms

of the Redfield matrix elements, Rαα′,ββ ′ :

(
τ

(α)
S,r

)−1 = 〈
α
∣∣Ŝ2

r

∣∣α〉−1 ∑
α′,β,β ′

Rαα′,ββ ′ 〈β|Ŝr |β ′〉〈α′|Ŝr |α〉. [8]

Equation [8] is valid for all S ≥ 1 and for arbitrary magnitudes of
the zfs and Zeeman energies, subject to the fundamental Redfield
assumption that the fluctuations of H ′

zfs(t) are rapid compared
to the time scale of relaxation; also, Eq. [2a] implies that reori-
entation is slower than electron spin relaxation. My object is to
simplify the description of the relaxation process by averaging
Eq. [8] over eigenstates, thus defining a single level-averaged re-
laxation time, τS,r , along each spatial direction (r ). This reduces
the number of independent relaxation parameters to at most three
(two for a cylindrical zfs tensor), providing a description of the
electron spin relaxation process that has comparable complexity
to B–M theory while accounting for effects of H 0

zfs. It is shown
below that level averaging leads to great simplification in the
mathematical form of the results.

LEVEL-AVERAGED RELAXATION TIMES

The ensemble average of Eq. [1] involves two independent
sets of spatial variables, one involving the stochastic motions
of H ′

zfs(t) (Eq. [3]), the other comprising the angular variables
{β, γ } which specify molecular orientation in Eq. [2] (i.e., H 0

S
in Eq. [2] is a function of the orientation of the permanent zfs
tensor relative to B0). The molecular orientation is assumed,
for the purpose of the calculation, to be time-independent as in
a powder. The calculation assumes a single specified molecu-
lar orientation, and thus the resulting level-averaged relaxation
times, τS,r , are functions of the Euler angles, {β, γ } (like the
τ

(α)
S,r in Eq. [8]). The orientational average is deferred to a later

stage of the calculation.
The time derivative of G̃r (τ ) at τ = 0 is, from Eq. [7],

[
dG̃r (τ )

dτ

]
0

=
∑

α

(ρ0)αα

(−τ
(α)
S,r

)−1〈
α
∣∣Ŝ2

r

∣∣α〉
. [9]

We wish to approximate G̃r (τ ) by a single exponential,

G̃r (τ ) ∼= G̃r (0) exp(−τ/τS,r ), [10]

for which the time derivative at τ = 0 is

[
dG̃r (τ )

dτ

]
0

= G̃r (0)(−τS,r )−1, [11a]

= 〈
Ŝ2

r

〉
(−τS,r )−1. [11b]

Using Eqs. [8], [9], and [11b] with
〈
Ŝ2

r

〉 = S(S + 1)/3 [12]
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gives

(τS,r )−1 =
∑

α

(ρ0)αα

〈
α
∣∣Ŝ2

r

∣∣α〉
〈
Ŝ2

r

〉 (
τ

(α)
S,r

)−1
, [13]

= [S(S +1)/3]−1
∑

α,α′,β,β ′
(ρ0)αα Rαα′,ββ ′

× 〈β|Ŝr |β ′〉〈α′|Ŝr |α〉. [14]

To evaluate the sums in Eq. [14], the Redfield matrix elements
need to be written explicitly in terms of spin matrix elements.
The coefficients, cq (t), of H ′

zfs(t) are stochastic in time and are
assumed to be uncorrelated for different Cartesian modes (q),
so that

cq (t)cq ′ (t + τ ) = |cq (0)|2e−τ/τq δq,q ′ , [15]

where τq is the correlation time for the qth mode of zfs distortion.
From the assumed form of H ′

zfs(t) in Eq. [2], the Redfield matrix
elements can be written

Rαα′,ββ ′ =
∑

q

[〈
α
∣∣Ŝ(2)

q

∣∣β〉〈
β ′∣∣Ŝ(2)

q

∣∣α′〉(kq (α′ − β ′) + kq (α − β))

− δα′β ′
∑

γ

〈
γ
∣∣Ŝ(2)

q

∣∣β〉〈
α
∣∣Ŝ(2)

q

∣∣γ 〉
kq (γ − β)

− δαβ

∑
γ

〈
γ
∣∣Ŝ(2)

q

∣∣α′〉〈β ′∣∣Ŝ(2)
q

∣∣γ 〉
kq (γ − β ′)

]
, [16]

where

kq (ω) = 2−1

∞∫
−∞

cq (t)cq (t + τ ) cos(ωτ ) dτ [17a]

= Cq
τq

1 + ω2τ 2
q

, [17b]

with

Cq = |cq (0)|2. [18]

Inserting Eqs. [3], [15], [16], and [17] into Eq. [14] gives, on the
rhs, a sum of terms, each composed of a product of five matrix
elements (two elements each of 〈Ŝ(2)

q 〉 and 〈Ŝr 〉 and one of 〈ρ0〉),
times a spectral density function, kq (ωαβ). In each term, all but
two of the spin indices (those which appear in kq (ωαβ)) can be
contracted by invoking closure. After renaming dummy indices,
Eq. [14] can be written

(τS,r )−1 = [S(S + 1)/3]−1

×
∑
α,β

∑
q

kq (ωαβ)
〈
α
∣∣Ŝ(2)

q

∣∣β〉〈
β
∣∣(Ŝrρ

0 Ŝ(2)
q Ŝr
+ Ŝr Ŝ(2)
q Ŝrρ

0 − Ŝr Ŝrρ
0 Ŝ(2)

q − Ŝ(2)
q S̃rρ

0 Ŝr
)∣∣α〉

. [19]
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Relaxation within the Scalar Part of the Density Matrix

In a thermal equilibrium sample, the density operator, ρ0, is
diagonal in the spin eigenbasis and has the form

ρ0 = Q−1
S exp

(−H 0
S

/
kT

)
[20a]

∼= Q−1
S

(
1 − (

HZ + H 0
zfs

)/
kT

)
. [20b]

QS is the partition function of S, equal to (2S + 1) in the high
temperature limit. The Zeeman and permanent zfs Hamiltonians,
HZ and H 0

zfs, give rise to components of macroscopic spin or-
der with, respectively, dipolar and quadrupolar tensor charac-
ter, the former corresponding to the macroscopic spin magne-
tization vector observed in ESR. The scalar part of 〈ρ0〉 is not
observed in ESR. However, the NMR-PRE involves randomiza-
tion of the microscopic electron-nuclear hyperfine interaction
and is influenced by all parts of the electron spin density ma-
trix including the scalar term, which is normally the largest.
We retain only the scalar term in Eq. [20b]. In this approxi-
mation, the density operator, ρ0 ∼= Q−1

S 1
¯̄

commutes with the
spin operators, and the terms of Eq. [19] can be collected, giv-
ing

(τS,r )−1 = [S(S + 1)/3]−1 Q−1
S

∑
α,β

∑
q

kq (ωαβ)

× 〈
α
∣∣Ŝ(2)

q

∣∣β〉〈
β
∣∣[[Ŝr , Ŝ(2)

q

]
, Ŝr

]∣∣α〉
. [21]

The double commutators in Eq. [21] can be evaluated by
straightforward operator algebra, from which it can be shown
that

[
Sr ,

[
S(2)

q , Sr
]] = n(r )

q S(2)
q + m(r )

q,q ′ S
(2)
q ′ , [22]

with the numerical coefficients n(r )
q and m(r )

q,q ′ given in Table 1.
From the table, the double commutator of Ŝ(2)

q regenerates Ŝ(2)
q

times an integer factor, n(r )
q , plus a cross-term (q �= q ′) which

vanishes except for r = {x, y} and {q, q ′} = {z2, x2 − y2}. (That
the cross-term vanishes in all but these cases can be shown
from the transformation properties of the functions, Ŝ(2)

q , under
the D2h point group, of which they form a representation; see
Appendix 2).

TABLE 1
Coefficients n(r )

q and m(r )
q,q′ in Eq. [22]

S(2)
q n(z)

q n(x)
q n(y)

q m(r )
q,q ′ S

(2)
q ′

Sz 2 0 3 3
√

3Sx2−y2

Sx2−y2 4 1 1
√

3Sz2

Sxz 1 1 4 0
yz

Sxy 4 1 1 0
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Inserting Eq. [22] into Eq. [21] gives

(τS,r )−1 = [S(S + 1)/3]−1 Q−1
S

×
( ∑

q

n(r )
q

∑
α,β

∣∣〈α∣∣Ŝ(2)
q

∣∣β〉∣∣2
kq (ωαβ)+c.t.

)
. [23a]

The cross-term (c.t.) results from the nonvanishing coefficients,
m(r )

q,q ′ , and has the form

c.t.=31/2cr

∑
α,β

〈
α
∣∣Ŝ(2)

1

∣∣β〉〈
β
∣∣Ŝ(2)

2

∣∣α〉
[k1(ωαβ)+k2(ωαβ)], [23b]

where the subscripts {1, 2} correspond to {ẑ2, x̂2 − ŷ2} (see
Appendix 1). The numerical factor, cr , is defined such that
31/2 cr equals the cross-coefficient, m(r )

q,q ′ . From Table 1, cr =
(+1, −1, 0) according to r = x̂, ŷ, ẑ, and hence,

cr = (δr,x̂ − δr,ŷ)(1 − δr,ẑ). [24]

In the above calculation, the Cartesian spin operators, Ŝr and
Ŝ(2)

q , and the relaxation times, τS,r , are defined in the zfs-PAS.
Practical computation of τS,r is most conveniently carried out
in the eigenbasis of H 0

zfs, rather than in the Zeeman basis (i.e.,
〈Ŝz〉, not〈Sz〉, is diagonal).

Comments on the Calculation

The above calculation describes relaxation times defined with
respect to the zfs principal axes (the M-F). It was derived from
Eq. [8] using two approximations. First, the level-specific relax-
ation behavior of Eq. [5] is approximated in Eq. [10] as a single
exponential. Second, only spin relaxation within the scalar part
of the density matrix is considered. These approximations lead
to the relatively simple expressions of Eqs. [23], which are valid
for all S ≥ 1 and for arbitrary magnitudes of the Zeeman and
permanent zfs Hamiltonians. In the zfs limit, Eqs. [23] reduce to
simple closed-form expressions, which are given in Appendix 3.

Outside the zfs limit, the relaxation times of Eqs. [23] depend
on the molecular orientation relative to the Zeeman field. In this
situation, spin relaxation in an isotropic sample is multiphasic,
involving a distribution of decay modes and decay constants.
A simple example of the multiphasic nature of M-F relaxation
outside the zfs limit is provided by a Zeeman limit physical
situation (H 0

zfs = 0) in which the L-F relaxation times differ,
τ 0

S1 > τ 0
S2. When this relaxation process is defined in the M-

F, the relaxation times (i.e., τS,r in Eqs. [23]) depend on the
orientation of the zfs tensor with respect to B0. For the parallel
orientation (ẑ‖B0), τS,ẑ = τ 0

S1; in the perpendicular orientation
(ẑ⊥B0), τS,ẑ = τ 0

S2; in other orientations, relaxation along the
M-F coordinate axes is biphasic. In an isotropic powder, M-F
relaxation in the intermediate regime (HZ ≈ H 0

zfs) is described

by a distribution of rate constants. A very simple approximate
representation of this multiphasic behavior is as a monophasic
RON SPIN RELAXATION 273

decay, the decay constant, (τ̄S,r )−1, of which is computed as the
orientational average of Eqs. [23]. The utility of this kind of
approximation is discussed further below.

It is easily seen that the M-F relaxation rate constants, (τ̄S,r )−1,
averaged over orientations, coincide with each other in the
Zeeman limit,

(τ̄S,x̂ )−1 = (τ̄S,ŷ)−1 = (τ̄S,ẑ)
−1 (Zeeman limit). [25a]

In this situation the (τ̄S,r )−1 equal the mean of the B-M values:

(τ̄S,ẑ)
−1 = 3−1

(
τ 0 −1

S1 + 2τ 0 −1

S2

)
(Zeeman limit). [25b]

That the orientationally averaged M-F relaxation times coincide
in the Zeeman limit (Eq. [25a]) even if the B–M relaxation times
differ (τ 0

S1 > τ 0
S2) results from the fact that the M-F coordinate

frame is randomly oriented with respect to the Zeeman field,
and in the Zeeman limit, the M-F axes are physically equivalent
with respect to the spin motion after orientational averaging.

In the zfs limit, orientational averaging of Eqs. [23] is not
required (since H 0

S = H 0
zfs does not depend on molecular ori-

entation), and the τS,r are given by the simple closed-form zfs
limit expressions of Appendix 3. There are at most three dis-
tinct level-averaged M-F relaxation times, τS,r (r = x̂, ŷ, ẑ) (or
two (r = ẑ, x̂) for a cylindrical zfs tensor). As described above,
M-F relaxation in the intermediate regime is described by a
continuum of rate constants, of which the orientational average,
(τ̄S,r )−1, provides a simple approximate description.

Laboratory-Frame Relaxation

The choice of the zfs-PAS as coordinate frame is not oblig-
atory, and a parallel calculation of level-averaged laboratory-
frame (L-F) relaxation times, τS1,2, is described below. In the
Zeeman limit, these quantities coincide with the relaxation times
of B–M theory, τS1,2 = τ 0

S1,2; however, the L-F relaxation times,
τS1,2, are also well defined in non-Zeeman limit situations, in-
cluding the zfs limit. In the zfs limit, all laboratory-frame direc-
tions are physically equivalent with respect to the spin motion
after orientational averaging, and thus there is only one orienta-
tionally averaged L-F relaxation rate, which equals the average
of the three M-F relaxation rates (this inverts Eqs. [25]):

(τ̄S1)−1 = (τ̄S2)−1

= 3−1[(τS,x̂ )−1 + (τS,ŷ)−1 + (τS,ẑ)
−1] (zfs limit)

= 3−1[2(τS,x̂ )−1 + (τS,ẑ)
−1] (cylindrical zfs limit).

[26]

In the intermediate regime, the L-F relaxation times, τS1,2,
are functions of molecular orientation (like the M-F relaxation

times, τS,r ), and spin relaxation in an isotropic sample is de-
scribed by a distribution of rate constants. An orientationally
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averaged rate constant, (τ̄S1,2)−1, with an approximate signifi-
cance analogous to (τ̄S,r )−1, can be defined.

Expressions for the L-F relaxation rates, (τS1,2)−1, can be de-
rived from a calculation parallel to that above in which the Gr (t)
are defined in the Zeeman frame. The static spin Hamiltonian,
H 0

S , of Eq. [2] can be expressed in the L-F as

H 0
S = geβe BoSz + (2/3)1/2 D

∑
q ′

S(2)
q ′ R(2)

q ′,1(α, β, γ )

+ E
∑

q ′
S(2)

q ′ R(2)
q ′,2(α, β, γ ). [27]

The quantities, R(2)
q ′,q (α, β, γ ), are rotation matrix elements

which transform the second-rank Cartesian tensor functions
from the M-F to the L-F; they are functions of the Euler an-
gles {α, β, γ }, which take the L-F into the M-F. The stochastic
Hamiltonian of Eq. [3] can likewise be transformed to the L-F,

H ′
zfs(t) = -h

∑
q

cq (t)
∑

q ′
S(2)

q ′ R(2)
q ′,q (α, β, γ )

= -h
∑

q ′
S(2)

q ′
∑

q

cq (t)R(2)
q,q ′ (α, β, γ )

= -h
∑

q ′
c′

q (α, β, γ ; t)S(2)
q ′ , [28]

where

c′
q (α, β, γ ; t) =

∑
q

cq ′ (t)R(2)
q,q ′ (α, β, γ ).

Thus the coefficients in the L-F expression for H ′
zfs(t) are func-

tions of molecular orientation as well as of time. After averag-
ing Eq. [28] over spatial orientations, the coefficients, cq ′ (t), are
functions only of time. However, it is not meaningful to assign
distinct dynamical properties to the L-F Cartesian modes of zfs
distortion, and so we treat zfs distortion as isotropic, with all
cq ′ (t) = c′(t), and describe the decay by a single correlation
time, τv:

c′(t)c′(t + τ ) = C ′ exp(−τ/τv). [29]

As is true for the M-F Cq parameters, the sum of the parameters
(-h2C ′) equals the trace, (-h�t)2, of [H ′

S(t)]2. Taking the principal
values of H ′

S(t) to be D′ and E ′, the relationships among these
quantities are

�2
t = (2/3)(D′/ -h)2 + 2(E ′/ -h)2 [30a]

=
∑

q

Cq (M-F) [30b]

= 5C ′ (L-F). [30c]
In Eqs. [30], H ′
S(t), D′, and E ′ have units of J; C ′, Cq , and �2

t
have units of (rad/s)2.
SHARP

The laboratory-frame formulation yields a mathematical ex-
pression similar to Eq. [23] but in which the Cartesian spin op-
erators, Sq , are defined in the laboratory frame. The numerical
coefficients, n(r )

q , are defined by Eq. [22] and retain the values in
Table 1. From Eq. [30c], there is only a single mean-square co-
efficient, C ′, and correlation time, τv, describing the stochastic
motions. In the high temperature limit, the expression equivalent
to Eq. [23] for L-F relaxation is

(τS1,2)−1 = 3(S(S + 1))−1(2S + 1)−1
(
�2

t /5
)

×
∑

q

n(z)
q

(∑
α,β

∣∣〈α∣∣S(2)
q

∣∣β〉∣∣2
j(ωαβ) + c.t.

)
[31a]

c.t. = 31/2cr

∑
α,β

〈
α
∣∣S(2)

1

∣∣β〉〈
β
∣∣S(2)

2

∣∣α〉
[2 j(ωαβ)] [31b]

j(ω) = τv/
(
1 + ω2τ 2

v

)
.

The quantities τS1 and τS2 describe spin relaxation parallel and
perpendicular to the Zeeman field direction. The expression for
τS2 is the same as Eqs. [31] except that n(x)

q replaces n(z)
q . These

expressions are valid for S ≥ 1 and for arbitrary magnitudes of
the Zeeman and static zfs Hamiltonians, subject to the same
approximations as for Eqs. [23]. In the Zeeman limit, it can be
shown that Eq. [31] reduces to the Bloembergen–Morgan result,

(
τ 0

S2

)−1 = cZ�2
t [(3/2) j(0) + (5/2) j(ωS) + j(2ωS)] [32a](

τ 0
S1

)−1 = cZ�2
t [ j(ωS) + 4 j(2ωS)], [32b]

where

cZ = [4S(S + 1) − 3]/5. [32c]

Short τv Limit

It is interesting to compare Eqs. [31] with a result of
McLachlan (45) that in the fast motion limit where all (ωαβτv) �
1, the relaxation rate defined in any coordinate frame, e.g.,
(τS1,2)−1 or (τS,r̂ )−1, approaches the limiting value,

(τS,r )−1
0 = [4S(S + 1) − 3]

(
�2

t

/
5
)
τv, [33]

as τv → 0. In this limit, Eq. [31] reduces to

(τS,r )−1
0 =3[(2S + 1)S(S + 1)]−1

(
�2

t

/
5
)
τv

∑
q

n(r )
q Tr

{
S(2)

q S(2)
q ′

}
.

[34]

The cross-term, c.t., in Eqs. [31] vanishes:

c.t. = 31/2cr (2τv)
∑
α,β

〈
α
∣∣S(2)

1

∣∣β〉〈
β
∣∣S(2)

2

∣∣α〉
1/2

{ (2) (2)}
= 3 cr (2τv)Tr S1 S2

= 0.
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The spin trace in Eq. [34] equals

Tr
{

S(2)
q S(2)

q ′
} = 2−13−15−1S(S +1)(2S +1)[4S(S + 1) − 3]δq,q ′

[35]

(this result is tedious to derive but is readily confirmed by calcu-
lation). Inserting Eq. [35] into Eq. [34], and using the fact that
�n(r )

q = 10 for any r , gives

(τS,r )−1
0 = [4S(S + 1) − 3]τv

(
�2

t

/
5
)
,

which is McLachlan’s result. The zfs-limit expressions in
Appendix 3 likewise approach McLachlan’s limit when τv → 0.

IMPLEMENTATION

The Zfs and Zeeman Limits

The expressions given in Appendix 3 for M-F electron spin
relaxation times can be incorporated directly into the zfs-limit
theory of the NMR-PRE. The appropriate zfs-limit expressions
for the NMR-PRE, valid for S = 1 to S = 5/2 assuming slow
reorientation and a cylindrical zfs tensor, are summarized in
Appendix 4. Equations [A4.1]–[A4.8] are similar to expressions
derived previously (3) but have been modified as needed to in-
corporate the level-averaged electron spin relaxation times of
Appendix 3. The corresponding Zeeman-limit expressions for
the NMR-PRE are those of SBM Theory.

Calculations outside the Zfs- and Zeeman-Limit Regimes

Equations [23] and [31] are more general expressions for
level-averaged electron spin relaxation that are valid for arbi-
trary magnitudes of the Zeeman and zfs interactions and for any
value of the spin, again subject to slow Brownian reorientation.
Equation [23] can be incorporated into formulations of NMR-
PRE theory which describe the electron spin motion in the M-F,
and Eq. [27] can be used when the electron spin motion is de-
scribed in the L-F. A computer program which implements these
calculations is described below.

While Eqs. [23] and [31] describe electron spin relaxation due
to the zfs distortion mechanism in the intermediate regime, it
should be appreciated that zfs interactions affect the NMR-PRE
in other ways as well. In particular, reorientational modulation of
the static zfs coupling provides an electron spin relaxation mech-
anism in addition to the collisional mechanism described above.
The reorientational relaxation contribution, (τ (R)

S,r )−1, which is
often significant when H 0

zfs > HZ, can be computed using either
of two different approaches: we use spin dynamics simulation
methods (3, 13, 18) (see below); alternatively, Swedish workers
have used the stochastic Liouville equation (SLE) approach of
Benetis, Westlund, Kowalewski et al. (19, 20, 23, 25, 26).
In addition, a static zfs interaction affects the NMR-PRE in
other ways than simply through its effect on electron spin relax-
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ation. The zfs interaction exerts an important influence on elec-
tron spin precession, on the spin wavefunctions, and on the axes
of spatial quantization, all of which have an important influence
on the NMR-PRE. While we have simple analytical expressions
for the Zeeman and slow-reorientation zfs limits, this is not true
of the intermediate regime, or when Brownian reorientation is
rapid. A realistic description of these more complicated situation
is provided by spin dynamics simulation (as well as by the SLE
approach). When Brownian reorientation is slow (i.e., slower
than electron spin relaxation), the intermediate regime can also
be described by slow-reorientation (S-R) NMR-PRE theory
(6, 11, 35).

Computer Implementation

To implement the various levels of theory both of the NMR-
PRE and of electron spin relaxation in a coherent and (we hope)
user-friendly manner, we have over a period of years devel-
oped a Fortran program, ParRelax.2. This program, which is
available on request, extends and refines our earlier programs,
PARELAX (6), SpinDyn.f (12), and RotJmpDyn.f (16–18). Par-
Relax.2 implements the theory of the NMR-PRE at four lev-
els: (1) SBM theory; (2) the orthorhombic zfs limit theory of
Ref. (11); (3) slow-reorientation theory of the NMR-PRE, which
is valid for arbitrary magnitudes of the Zeeman and zfs interac-
tions; and (4) spin dynamics simulation. In the initial analysis of
NMR-PRE data, we always use the S-R theory of levels (2) and
(3), because S-R theory is amenable to a highly intuitive physical
interpretation (3, 11), especially in the zfs limit. The analysis is
subsequently refined and the effects of Brownian reorientation
introduced using SD simulation.

Within each of the four levels of theory, electron spin relax-
ation can be described by the following methods as selected by
the user: (i) by a set of constant (magnetic field-independent)
user-defined relaxation parameters; (ii) by B-M theory; (iii) by
the level-averaged relaxation times defined above; or (iv) by the
level-specific relaxation times of Ref. (40). All of these meth-
ods are useful in practice. It is, for example, frequently useful to
begin an analysis with the crude assumption of method (i) and
subsequently to refine it to level (iii)/(iv), thereby displaying
phenomena associated with the magnetic field dependence of
the electron spin relaxation times. ParRelax.2 will, with an
appropriate setting of flags, calculate the NMR R1,2p relax-
ation rates (dipolar and scalar) for each of the four levels
(1)–(4) of theory, and, for the same set of physical assump-
tions, calculate the electron spin relaxation times by methods
(i)–(iv).

Orientational averaging is carried out in the algorithms of
ParRelax.2 as follows. The Zeeman field is positioned in the
molecular frame at a series of polar angles defined by the ver-
tices and face centers of the truncated icosahedron (buckeyball).
There are 92 sampled orientations, at each of which H 0

S is diag-
onalized. The Cartesian spin matrices, 〈Sq〉 and 〈Sr 〉, and tran-

sition frequencies, ωαβ , needed in Eqs. [23] and [31] are com-
puted in the spin eigenbasis at each orientation. This sampling
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procedure provides unbiased and highly effective spatial aver-
aging.

This method of orientational averaging can be applied both to
the NMR-PRE and to the electron spin relaxation times. In the
slow-reorientation NMR-PRE calculations of levels (2) and (3),
the electron spin relaxation times are computed at each of the 92
sampled orientations using either an L-F formulation or an M-
F formulation as required in the calculation of the NMR-PRE.
Then the NMR-PRE is computed at the same set of orientations,
using these spatially unaveraged electron spin relaxation times.
Alternatively, the electron spin relaxation times can be calculated
and employed as the orientationally averaged quantities, (τ̄S,r )−1

or (τ̄S1,2)−1. The former procedure is more accurate but involves
greater complexity in the physical description.

Spin dynamics simulations of the NMR-PRE require the
use of orientationally and level-averaged L-F relaxation times,
(τ̄S1,2)−1. While SD simulation generalizes the description of the
NMR-PRE in accounting for effects of Brownian reorientation,
it uses a less detailed description of electron spin relaxation than
is possible within S-R theory (levels (2) and (3)). This kind of
trade-off needs to be considered in practical analyses.

SUMMARY AND ILLUSTRATIVE CALCULATIONS

In the preceding discussion, electron spin relaxation times
have been defined in six ways, which I summarize. There are
three sets of L-F relaxation times: (1) τ 0

S1,2 from B–M theory
(Eqs. [32]); (2) the level-averaged relaxation times, τS1,2, of
Eq. [31]; these quantities are functions of molecular orienta-
tion; and (3) the level- and orientationally averaged quantities,
(τ̄S1,2)−1. There are likewise three sets of relaxation times de-
fined in the M-F: (4) τ

(α)
S,r are eigenstate-specific relaxation times

of Eq. [8]; outside the zfs limit, these quantities are functions of
molecular orientation; (5) the level-averaged relaxation times,
τS,r , of Eq. [23], which are also functions of molecular orienta-
tion; and (6) the level- and orientationally averaged quantities,
(τ̄S,r )−1. In the Zeeman limit, the L-F relaxation times, τS1,2, re-
duce to the relaxation times of B–M theory, τ 0

S1,2. In the zfs limit,
the M-F relaxation times do not depend on molecular orientation
and can be written as in Appendix 3.

Illustrative Calculations

Figures 1–4 compare M-F relaxation rates calculated
from Eqs. [23] with L-F relaxation rates calculated from
Eqs. [31] for values of the spin quantum number, S = 1,
3/2, 2, and 5/2. Bloembergen–Morgan (B–M) relaxation rates
computed from Eqs. [32] are shown for comparison. In these
plots, the variable along the abscissa is the zfs D̃ parameter.
However, the calculations assumed that (ω̃S + D̃) = 2 cm−1,
where ω̃S is the Larmor frequency in wavenumbers. Thus the
plots range from the Zeeman limit on the left to the zfs limit on

the right. The plotted quantities are τ̄S1,2 and τ̄S,r ; i.e., Eqs. [23]
and [31] are averaged over molecular orientations.
SHARP

FIG. 1. Variation of laboratory-frame (L-F) and molecular-frame (M-F)
relaxation rates from the zfs limit to the Zeeman limit for S = 1. The calculations
assumed ω̃S + D̃ = 2 cm−1, where ω̃S (≡ωS/2πc) is the Larmor frequency in
wavenumbers; the left-hand side of the graph is the zfs limit and the right-hand
side is the Zeeman limit. L-F relaxation rates were calculated from Eq. [31]
and M-F relaxation rates from Eq. [23], and both quantites were averaged over
molecular orientations as described in the text. Bloembergen–morgan (B–M)
relaxation rates, calculated from Eqs. [32], are shown for comparison. Other
parameters of the calculation were E = 0, τq = τv = 4 ps, �t = 0.5 cm−1.

Consistent with the above discussion, the L-F relaxation times
coincide in the Zeeman limit with B–M values (dashed). Also,
consistent with Eqs. [26], the computed L-F relaxation rates,
(τ̄S1)−1 and (τ̄S2)−1, differ in the Zeeman limit but coincide in

FIG. 2. Variation of laboratory-frame (L-F) and molecular-frame (M-F)
relaxation rates from the zfs limit to the Zeeman limit for S = 3/2. Except for

the spin quantum number, the calculations were carried out as described in the
legend to Fig. 1.
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FIG. 3. Variation of laboratory-frame (L-F) and molecular-frame (M-F)
relaxation rates from the zfs limit to the Zeeman limit for S = 2. Except for
the spin quantum number, the calculations were carried out as described in the
legend to Fig. 1.

the zfs limit at a value equal to the mean of the M-F relax-
ation rates, τ̄−1

S,r (r = x̂, ŷ, ẑ). Conversely, the M-F relaxation
rates differ from each other in the zfs limit but coincide in the
Zeeman limit at a value equal to the mean of the L-F relax-
ation rates. (The calculations assumed a cylindrical zfs tensor

FIG. 4. Variation of laboratory-frame (L-F) and molecular-frame (M-F)
relaxation rates from the zfs limit to the Zeeman limit for S = 5/2. Except for

the spin quantum number, the calculations were carried out as described in the
legend to Fig. 1.
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so that there are two, rather than three, distinct M-F relaxation
times.) A comparison of Figs. 1–4 shows that the deviation
of B–M theory from the results of the generalized expres-
sions (i.e., τ̄S1,2 computed from Eq. [31]) becomes more pro-
nounced as the spin quantum number increases. The relax-
ation rates also become increasingly complex functions of
the parameters, D̃ and ω̃S , that determine the level structure.
The plots in Figs. 3 and 4 exhibit bi-sigmoidal character, re-
flecting the relatively complex level structures of S = 2 and
S = 5/2.

Zfs-limit values for the M-F relaxation times are given by
the closed-form expressions of Appendix 3. These expressions
describe the cylindrical zfs limit, except fot S = 1, for which
expressions for the orthorhombic zfs limit are given as well
(Eqs. [A3.9]–[A3.11]). For S ≥ 3/2, the spin wavefunctions de-
pend on the rhombicity ratio (E/D), and simple expressions
analogous to Eqs. [A3.3]–[A3.8] cannot be given.

APPENDIX 1

Second-Rank Cartesian Tensor Operators

The second-rank Cartesian tensor operators in Eq. [3] are
defined as follows:

S(2)
1 ≡ Sz2 = (3/2)1/2

(
S2

z − S(S + 1)
/

3
)

[A1.1]

S(2)
2 ≡ Sx2−y2 = 2−1/2

(
S2

x − S2
y

)
[A1.2]

S(2)
3 ≡ Sxz = 2−1/2(Sx Sz + Sz Sx ) [A1.3]

S(2)
4 ≡ Syz = 2−1/2(Sy Sz + Sz Sy) [A1.4]

S(2)
5 ≡ Sxy = 2−1/2(Sx Sy + Sy Sx ). [A1.5]

APPENDIX 2

Double Commutators of the Cartesian Spin Tensors

The quadratic spin functions, S(2)
q , of Appendix 1 form a re-

presentation of the D2h point group in which {S(2)
z2 , S(2)

x2−y2 , S(2)
xy ,

S(2)
xz , S(2)

yz } transform as {Ag, Ag, B1g, B2g, B3g}. The symmetry
of the commutator, [Sr , [S(2)

q , Sr ]], can be evaluated from the
direct product of the irreducible representations of the factors
which form it. The double commutator, [Sx , [S(2)

z2 , Sx ]], for ex-
ample, transforms as B2g ⊗ Ag ⊗ B2g = Ag and thus equals a lin-
ear combination of S(2)

z2 and S(2)
x2−y2 . In the same way, each double

commutator [Sr , [S (2)
q , Sr ]] belongs to the same irreducible rep-

resentation as S (2)
q . The double commutators contain cross-terms

only for {q, q ′} = {z2, x2 − y2}, and for these, only for r = x, y,
since [Sz, S(2)
z2 ] = 0, and [Sz, [S(2)

x2−y2 , Sz]] = −4S(2)
x2−y2 .



278 ROBERT

APPENDIX 3

Zfs Limit Electron Spin Relaxation Formulae

Formulae [A3.1]–[A3.11] are for level-averaged zfs limit re-
laxation times, τS,r (r = x̂, ẑ), defined in the M-F. A cylindri-
cal zfs limit Hamiltonian, H 0

S = H 0
zfs, is assumed except where

stated for S = 1. It is also assumed that all Cartesian modes (q)
are described by a single value of τq and Cq in Eq. [17b]. In the
zfs limit, there is a single spatially averaged L-F relaxation time,
τ̄S1 = τ̄S2, which can be computed from Eq. [26] using the M-F
relaxation times below:

S = 1:

(τS,x̂ )−1 = (5/2)(k(0) + k(ωD)) [A3.1]

(τS,ẑ)
−1 = 4 k(0) + k(ωD) [A3.2]

S = 3/2:

(τS,x̂ )−1 = (6/5)(3 k(0) + 7 k(2ωD)) [A3.3]

(τS,ẑ)
−1 = 12 k(2ωD) [A3.4]

S = 2:

(τS,x̂ )−1 = (1/10)(81 k(0) + 15 k(ωD)

+ 24 k(2ωD) + 90 k(3ωD)) [A3.5]

(τS,ẑ)
−1 = (1/10)(72 k(0) + 6 k(ωD)

+ 96 k(2ωD) + 36 k(3ωD)) [A3.6]

S = 5/2:

(τS,x̂ )−1 = (2/35)(168 k(0) + 152 k(2ωD)

+ 200 k(4ωD) + 40 k(6ωD)) [A3.7]

(τS,ẑ)
−1 = (2/35)(320 k(2ωD) + 80 k(4ωD)

+ 160 k(6ωD)) [A3.8]

S = 1 (orthorhombic zfs tensor):

(τS,x̂ )−1 = (3/2) k(0) + k(2ωE ) + (5/4)(k(ωD − ωE )

+ k(ωD + ωE )) [A3.9]

τS,ŷ = τS,x̂ [A3.10]

(τS,ẑ)
−1 = 4 k(2ωE ) + (1/2)(k(ωD − ωE ) + k(ωD + ωE )).
[A3.11]
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APPENDIX 4

Zfs-Limit Formulae for the NMR-PRE

The following formulae describe the zfs-limit R1p NMR-PRE.
It should be noted that in the zfs limit, R1p = R2p, since the dipo-
lar field of S is uncorrelated with the laboratory axes. R1p can
be written as the sum of a longitudinal contribution, R1ẑ , arising
from the time correlation function, 〈Sẑ(0)Sẑ(t)〉, of 〈Sẑ〉, plus a
transverse contribution, R1⊥̂, arising from 〈Sx̂ (0)Sx̂ (t)〉. These
two contributions depend respectively on thermal relaxation of
〈S〉 along ẑ and x̂ . Assuming level-averaged electron spin re-
laxation, R1ẑ and R1⊥̂ depend respectively on the quantities τS,ẑ

and τS,x̂ of Appendix 3.
Thus the zfs-limit NMR-PRE is

R1p = R2p = R1ẑ + R1x̂ ,

with R1ẑ and R1x̂ given by Eqs. [A4.1]–[A4.8]. These expres-
sions assume slow Brownian reorientation and a cylindrical
quadratic zfs tensor (D �= 0, E = 0), and electron spin transi-
tion frequencies are assumed much larger than the nuclear spin
transition frequencies. The nuclear gyromagnetic ratio is γI , and
cd is a constant,

cd = −geβe(µ0/4π );

ge, βe, and µ0 are the electron g factor, the Bohr magneton, and
the permeability of space. The electron-nuclear (S–I) interspin
vector is rIS of length rIS. The angular functions, �(θẑ) and �(θẑ),
describe the dependence of the NMR-PRE on the polar angle θẑ

between rIS and the unique axis of the zfs tensor,

�1(θẑ) = 3−1(1 + P2(cos θẑ))

�2(θẑ) = 6−1(2 − P2(sin θẑ)),

where P2(x) is the second-order Legendre polynomial. The
spectral density functions,

jr (ω) = τS,r

1 + (ωτS,r )2
(r = x̂, ẑ),

depend on the level-averaged electron spin relaxation times, τS,ẑ

and τS,x̂ , defined along molecule-fixed x̂ and ẑ directions. Func-
tional forms for τS,ẑ and τS,x̂ are given by the following:

S = 1:

R1ẑ = (8/3)
(
γI cd

)2
r−6

IS �1(θẑ) jẑ(ωI ) [A4.1]

R1x̂ = (16/3)
(
γI cd

)2
r−6

IS �2(θẑ) jx̂ (ωD) [A4.2]

S = 3/2:
R1ẑ = 5
(
γI cd

)2
r−6

IS �1(θẑ) jẑ(ωI ) [A4.3]
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R1x̂ = (
γI cd

)2
r−6

IS �2(θẑ)(6 jx̂ (2ωD) + 4 jx̂ (ωI )) [A4.4]

S = 2:

R1ẑ = 8
(
γI cd

)2
r−6

IS �1(θẑ) jẑ(ωI ) [A4.5]

R1x̂ = (4/5)
(
γI cd

)2
r−6

IS �2(θẑ)(6 jx̂ (3ωD) + 12 jx̂ (ωD))

[A4.6]

S = 5/2:

R1ẑ = (35/3)
(
γI cd

)2
r−6

IS �1(θẑ) jẑ(ωI ) [A4.7]

R1x̂ = (2/3)
(
γI cd

)2
r−6

IS �2(θẑ)(10 jx̂ (4ωD)

+ 16 jx̂ (2ωD) + 9 jx̂ (ωI )). [A4.8]
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